By | 10/11/2018

Hello sahabat Anak Kendali.

pada kesempatan kali ini saya akan menuliskan artikel tutorial tentang Tutorial STM32, Cara Membaca ADC Multichanel STMCubeMx dan Keil uVision

keyword :
Cara Mengakses ADC STM32
Cara Mengakses ADC multiple STM32Cara Mengakses ADC Multichanel STM32
Tutorial Mengakses ADC STM32

pada artikel ini saya akan membaca nilai ADC dengan resolusi 10bit menggunkaan STM32F446RE Nucleo. kemudian hasil pembacaan ADC tersebut ditampilkan pada LCD 16×2 menggunakan komunikasi I2C.
untuk tutorial LCD I2C dengan STM32 silahkan baca ArtikelĀ Tutorial STM32, Cara Mengakses LCD I2C STMCubeMx dan Keil uVision

Tutorial STM32, Cara Membaca ADC Multichanel STMCubeMx dan Keil uVision 5

Hasil, Adc3 dicolok ke 3,3V = 1023, Adc2 tidak dicolok = 101, Adc1 dicolok ke GND = 0 silahkan dicoba menggunakan Potensiometer atau sensor yang keluaranya analog. 

Download File Project Mengakses ADC STM32 DOWNLOAD

jika kita hanya menggunakan satu chanel programnya cukup seperti berikut :

HAL_ADC_Start();
HAL_ADC_GetValue();

saya tidak membuat tutuorial untuk cara membaca nilai adc satu chanel saja, karena saya pikir kalo sudah bisa memabaca  multichanel pasti bisa membaca satu chanel.

baiklah berikut adalah gambar konfigurasi STMCubMX nya, silahkan di ikuti

kemudian generate program nya dan buka pada aplikasi Keil uVisio 5. buatlah program seperti berikut ini untuk file main.c

/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  ** This notice applies to any and all portions of this file
  * that are not between comment pairs USER CODE BEGIN and
  * USER CODE END. Other portions of this file, whether
  * inserted by the user or by software development tools
  * are owned by their respective copyright owners.
  *
  * COPYRIGHT(c) 2018 STMicroelectronics
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
/* USER CODE BEGIN Includes */
#include "lcd_i2c_stm32.h"
#include "stdio.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c1;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
DMA_HandleTypeDef myDMA2_handle;
/* USER CODE END 0 */
/**
  * @brief  The application entry point.
  *
  * @retval None
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
uint32_t val[3];
char buff[16];
  /* USER CODE END 1 */
  /* MCU Configuration----------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock_Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */
HAL_ADC_Start_DMA(&hadc1, val, 3);
lcd_begin(0x7E, 16,2);
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
  /* USER CODE END WHILE */
  /* USER CODE BEGIN 3 */
lcd_clear();
lcd_gotoxy(0,0);
sprintf(buff, "%d", val[0]);
lcd_print(buff);
lcd_gotoxy(4,0);
sprintf(buff, "%d", val[1]);
lcd_print(buff);
lcd_gotoxy(8,0);
sprintf(buff, "%d", val[2]);
lcd_print(buff);
HAL_Delay(200);
  }
  /* USER CODE END 3 */
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
    /**Configure the main internal regulator output voltage
    */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
    /**Initializes the CPU, AHB and APB busses clocks
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
    /**Initializes the CPU, AHB and APB busses clocks
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLRCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
    /**Configure the Systick interrupt time
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
    /**Configure the Systick
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* ADC1 init function */
static void MX_ADC1_Init(void)
{
  ADC_ChannelConfTypeDef sConfig;
    /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
    */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_10B;
  hadc1.Init.ScanConvMode = ENABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 3;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
    */
  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
    */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = 2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
    */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
}
/* I2C1 init function */
static void MX_I2C1_Init(void)
{
  hi2c1.Instance = I2C1;
  hi2c1.Init.ClockSpeed = 100000;
  hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }
}
/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{
  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();
  /* DMA interrupt init */
  /* DMA2_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/** Configure pins as
        * Analog
        * Input
        * Output
        * EVENT_OUT
        * EXTI
     PA0-WKUP   ------> SharedAnalog_PA0
     PA1   ------> SharedAnalog_PA1
     PA4   ------> SharedAnalog_PA4
*/
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct;
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  /*Configure GPIO pins : PA0 PA1 PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
  * @brief  This function is executed in case of error occurrence.
  * @param  file: The file name as string.
  * @param  line: The line in file as a number.
  * @retval None
  */
void _Error_Handler(char *file, int line)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %drn", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/**
  * @}
  */
/**
  * @}
  */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

mungkin cukup sekian dulu tutorial kali ini, semoga bermanfaat dan jangan lupa untuk membagikan artikel nya, jika ada yang ingin di diskusikan silahkan tulis dikomentar.
selalu berlangganan pada www.anakkendali.com

Leave a Reply

Your email address will not be published. Required fields are marked *